16 research outputs found

    Experiences with AR plots: A travel time augmented reality game

    Get PDF
    Digital games have the potential for changing attitudes towards social issues such as climate change and sustainability. These games don’t have to be based on fixed computing and with the rise of smart phone, they can make use of a range of sensor and augmented reality technologies. This paper presents the experience of developing AR Plots, a prototype locative game with an augmented reality interface. It is a game designed to fit in with the fractured nature of travel time on public transport. This paper discusses technical challenges, usability issues and game design approaches used to work within these constraints

    Context caches in the clouds

    Get PDF
    In context-aware systems, the contextual information about human and computing situations has a strong temporal aspect i.e. it remains valid for a period of time. This temporal property can be exploited in caching mechanisms that aim to exploit such locality of reference. However, different types of contextual information have varying temporal validity durations and a varied spectrum of access frequencies as well. Such variation affects the suitability of a single caching strategy and an ideal caching mechanism should utilize dynamic strategies based on the type of context data, quality of service heuristics and access patterns and frequencies of context consuming applications. This paper presents an investigation into the utility of various context-caching strategies and proposes a novel bipartite caching mechanism in a Cloud-based context provisioning system. The results demonstrate the relative benefits of different caching strategies under varying context usage scenarios. The utility of the bipartite context caching mechanism is established both through simulation and deployment in a Cloud platform

    Energy conservation in mobile devices and applications: A case for context parsing, processing and distribution in clouds

    Get PDF
    Context information consumed and produced by the applications on mobile devices needs to be represented, disseminated, processed and consumed by numerous components in a context-aware system. Significant amounts of context consumption, production and processing takes place on mobile devices and there is limited or no support for collaborative modelling, persistence and processing between device-Cloud ecosystems. In this paper we propose an environment for context processing in a Cloud-based distributed infrastructure that offloads complex context processing from the applications on mobile devices. An experimental analysis of complexity based context-processing categories has been carried out to establish the processing-load boundary. The results demonstrate that the proposed collaborative infrastructure provides significant performance and energy conservation benefits for mobile devices and applications

    Provision of an integrated data analysis platform for computational neuroscience experiments

    Get PDF
    © Emerald Group Publishing Limited. Purpose – The purpose of this paper is to provide an integrated analysis base to facilitate computational neuroscience experiments, following a user-led approach to provide access to the integrated neuroscience data and to enable the analyses demanded by the biomedical research community. Design/methodology/approach – The design and development of the N4U analysis base and related information services addresses the existing research and practical challenges by offering an integrated medical data analysis environment with the necessary building blocks for neuroscientists to optimally exploit neuroscience workflows, large image data sets and algorithms to conduct analyses. Findings – The provision of an integrated e-science environment of computational neuroimaging can enhance the prospects, speed and utility of the data analysis process for neurodegenerative diseases. Originality/value – The N4U analysis base enables conducting biomedical data analyses by indexing and interlinking the neuroimaging and clinical study data sets stored on the grid infrastructure, algorithms and scientific workflow definitions along with their associated provenance information

    Survey of context provisioning middleware

    Get PDF
    In the scope of ubiquitous computing, one of the key issues is the awareness of context, which includes diverse aspects of the user's situation including his activities, physical surroundings, location, emotions and social relations, device and network characteristics and their interaction with each other. This contextual knowledge is typically acquired from physical, virtual or logical sensors. To overcome problems of heterogeneity and hide complexity, a significant number of middleware approaches have been proposed for systematic and coherent access to manifold context parameters. These frameworks deal particularly with context representation, context management and reasoning, i.e. deriving abstract knowledge from raw sensor data. This article surveys not only related work in these three categories but also the required evaluation principles. © 2009-2012 IEEE

    Context-aware service utilisation in the clouds and energy conservation

    No full text
    Ubiquitous computing environments are characterised by smart, interconnected artefacts embedded in our physical world that provide useful services to human inhabitants unobtrusively. Mobile devices are becoming the primary tools for human interaction with these embedded artefacts and for the utilisation of services available in smart computing environments such as clouds. Advancements in the capabilities of mobile devices allow a number of user and environment related context consumers to be hosted on these devices. Without a coordinating component, these context consumers and providers are a potential burden on device resources; specifically the effect of uncoordinated computation and communication with cloud-enabled services can negatively impact battery life. Therefore energy conservation is a major concern in realising the collaboration and utilisation of mobile device based context-aware applications and cloud based services. This paper presents the concept of a context-brokering component to aid in coordination and communication of context information between mobile devices and services deployed in a cloud infrastructure. A prototype context broker is experimentally analysed for effects on energy conservation when accessing and coordinating with cloud services on a smart device, with results signifying reduction in energy consumption

    Context parsing, processing and distribution in clouds

    No full text
    corecore